International Science Index
128
10007836
Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers
Abstract: In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.
127
10007439
Computer-Aided Teaching of Transformers for Undergraduates
Abstract: In the era of technological advancement, use of computer technology has become inevitable. Hence it has become the need of the hour to integrate software methods in engineering curriculum as a part to boost pedagogy techniques. Simulations software is a great help to graduates of disciplines such as electrical engineering. Since electrical engineering deals with high voltages and heavy instruments, extra care must be taken while operating with them. The viable solution would be to have appropriate control. The appropriate control could be well designed if engineers have knowledge of kind of waveforms associated with the system. Though these waveforms can be plotted manually, but it consumes a lot of time. Hence aid of simulation helps to understand steady state of system and resulting in better performance. In this paper computer, aided teaching of transformer is carried out using MATLAB/Simulink. The test carried out on a transformer includes open circuit test and short circuit respectively. The respective parameters of transformer are then calculated using the values obtained from open circuit and short circuit test respectively using Simulink.
126
10006945
Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs
Abstract: Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.
125
10006578
Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Abstract: Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
124
10005431
Technologic Information about Photovoltaic Applied in Urban Residences
Abstract: Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.
123
10007078
Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter
Abstract: This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.
122
10006697
Fault and Theft Recognition Using Toro Dial Sensor in Programmable Current Relay for Feeder Security
Abstract: Feeder protection is important in transmission and distribution side because if any fault occurs in any feeder or transformer, man power is needed to identify the problem and it will take more time. In the existing system, directional overcurrent elements with load further secured by a load encroachment function can be used to provide necessary security and sensitivity for faults on remote points in a circuit. It is validated only in renewable plant collector circuit protection applications over a wide range of operating conditions. In this method, the directional overcurrent feeder protection is developed by using monitoring of feeder section through internet. In this web based monitoring, the fault and power theft are identified by using Toro dial sensor and its information is received by SCADA (Supervisory Control and Data Acquisition) and controlled by ARM microcontroller. This web based monitoring is also used to monitor the feeder management, directional current detection, demand side management, overload fault. This monitoring system is capable of monitoring the distribution feeder over a large area depending upon the cost. It is also used to reduce the power theft, time and man power. The simulation is done by MATLAB software.
121
10004995
Weight Comparison of Oil and Dry Type Distribution Transformers
Abstract: Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.
120
10003517
Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation
Abstract: This paper presents an analysis study on the impacts
of the changes of the capacitor banks, the loss of a transformer, and
the installation of distributed generation on the voltage total harmonic
distortion and harmonic resonance. The study is applied in a real
system in Oman, Sohar Industrial Port–C Substation Network.
Frequency scan method and Fourier series analysis method are used
with the help of EDSA software. Moreover, the results are compared
with limits specified by national Oman distribution code.
119
10003432
Power Transformer Noise, Noise Tests, and Example Test Results
Abstract: Voltage level must be raised in order to deliver the
produced energy to the consumption zones with less loss and less
cost. Power transformers used to raise or lower voltage are important
parts of the energy transmission system. Power transformers used in
switchgear and power generation plants stay in human's intensive
habitat zones as a result of expanding cities. Accordingly, noise
levels produced by power transformers have begun more and more
important and they have established itself as one of the research field.
In this research, the noise cause on transformers has been
investigated, it's causes has been examined and noise measurement
techniques have been introduced. Examples of transformer noise test
results are submitted and precautions to be taken were discussed for
the purpose of decreasing of the noise which will occurred by
transformers.
118
10006795
Power Transformers Insulation Material Investigations: Partial Discharge
Abstract: There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.
117
10002479
Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool
Abstract: Current transformers are an integral part of power
system because it provides a proportional safe amount of current for
protection and measurement applications. However, when the power
system experiences an abnormal situation leading to huge current
flow, then this huge current is proportionally injected to the
protection and metering circuit. Since the protection and metering
equipment’s are designed to withstand only certain amount of current
with respect to time, these high currents pose a risk to man and
equipment. Therefore, during such instances, the CT saturation
characteristics have a huge influence on the safety of both man and
equipment and on the reliability of the protection and metering
system. This paper shows the effect of burden on the Accuracy Limiting
factor/ Instrument security factor of current transformers and the
change in saturation characteristics of the CT’s. The response of the
CT to varying levels of overcurrent at different connected burden will
be captured using the data acquisition software LabVIEW. Analysis
is done on the real time data gathered using LabVIEW. Variation of
current transformer saturation characteristics with changes in burden
will be discussed.
116
10002630
Effects of Water Content on Dielectric Properties of Mineral Transformer Oil
Abstract: Mineral oil is commonly used for high voltage
transformer insulation. The insulation quality of mineral oil is
affecting the operation process of high voltage transformer. There are
many contaminations which could decrease the insulation quality of
mineral oil. One of them is water. This research talks about the effect
of water content on dielectric properties, physic properties, and
partial discharge pattern on mineral oil. Samples were varied with 10
varieties of water content value. And then all samples would be tested
to measure the dielectric properties, physic properties, and partial
discharge pattern. The result of this research showed that an
increment of water content value would decrease the insulation
quality of mineral oil.
115
10002032
Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area
Abstract: In this paper, influence of harmonics on medium
voltage distribution system of Bogazici Electricity Distribution Inc.
(BEDAS) which takes place at Istanbul/Turkey is investigated. A ring
network consisting of residential loads is taken into account for this
study. Real system parameters and measurement results are used for
simulations. Also, probable working conditions of the system are
analyzed for 50%, 75%, and 100% loading of transformers with
similar harmonic contents. Results of the study are exhibited the
influence of nonlinear loads on %THDV, P.F. and technical losses of
the medium voltage distribution system.
114
10002203
Loss Analysis by Loading Conditions of Distribution Transformers
Abstract: Efficient use of energy, the increase in demand of
energy and also with the reduction of natural energy sources, has
improved its importance in recent years. Most of the losses in the
system from electricity produced until the point of consumption is
mostly composed by the energy distribution system. In this study,
analysis of the resulting loss in power distribution transformer and
distribution power cable is realized which are most of the losses in
the distribution system. Transformer losses in the real distribution
system are analyzed by CYME Power Engineering Software
program. These losses are disclosed for different voltage levels and
different loading conditions.
113
10002221
Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers
Abstract: In insulation and cooling of power transformers
various liquids are used. Mineral oils have wide availability and low
cost. However, they have a poor biodegradability potential and lower
fire point in comparison with other insulating liquids. Use of a liquid
having high biodegradability is important due to environmental
consideration. This paper investigates edible corn oil as an alternative
to mineral oil. Various properties of mineral and corn oil like
breakdown voltage, dissipation factor, relative dielectric constant,
power loss and resistivity were measured according to different
standards.
112
10002277
Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device
Abstract: In this paper, monitoring and control of tap changer
mechanism of a transformer implementation in an Intelligent
Electronic Device (IED) is discussed. It has been a custom for
decades to provide a separate panel for on load tap changer control
for monitoring the tap position. However, this facility cannot either
record or transfer the information to remote control centers. As there
is a technology shift towards the smart grid protection and control
standards, the need for implementing remote control and monitoring
has necessitated the implementation of this feature in numerical
relays. This paper deals with the programming, settings and logic
implementation which is applicable to both IEC 61850 compatible
and non-compatible IEDs thereby eliminating the need for separate
tap changer control equipment. The monitoring mechanism has been
implemented in a 28MVA, 110 /6.9kV transformer with 16 tap
position with GE make T60 IED at Ultratech cement limited
Gulbarga, Karnataka and is in successful service.
111
10002664
A Novel Solution to Restricted Earth Fault Low Impedance Relay Maloperation
Abstract: In this paper, various methods of providing restricted
earth fault protection are discussed. The proper operation of high and
low impedance Restricted Earth Fault (REF) protection for various
applications has been discussed. The maloperation of a relay due to
improper placement of CTs has been identified and a simple/unique
solution has been proposed in this work with a case study. Moreover,
it is found that the proper placement of CT in high impedance method
will provide the same result with reduced CT. This methodology has
been successfully implemented in Al Takreer refinery for a 2000
KVA transformer. The outcome of the paper may be included in
IEEEC37.91 standard to give the proper guidance for protection
engineers to sort out the issues related to mal functioning of REF
relays.
110
10003802
An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers
Abstract: In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature.
109
10001976
The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning
Abstract: This study suggests the estimation method of stress
distribution for the beam structures based on TLS (Terrestrial Laser
Scanning). The main components of method are the creation of the
lattices of raw data from TLS to satisfy the suitable condition and
application of CSSI (Cubic Smoothing Spline Interpolation) for
estimating stress distribution. Estimation of stress distribution for the
structural member or the whole structure is one of the important
factors for safety evaluation of the structure. Existing sensors which
include ESG (Electric strain gauge) and LVDT (Linear Variable
Differential Transformer) can be categorized as contact type sensor
which should be installed on the structural members and also there are
various limitations such as the need of separate space where the
network cables are installed and the difficulty of access for sensor
installation in real buildings. To overcome these problems inherent in
the contact type sensors, TLS system of LiDAR (light detection and
ranging), which can measure the displacement of a target in a long
range without the influence of surrounding environment and also get
the whole shape of the structure, has been applied to the field of
structural health monitoring. The important characteristic of TLS
measuring is a formation of point clouds which has many points
including the local coordinate. Point clouds are not linear distribution
but dispersed shape. Thus, to analyze point clouds, the interpolation is
needed vitally. Through formation of averaged lattices and CSSI for
the raw data, the method which can estimate the displacement of
simple beam was developed. Also, the developed method can be
extended to calculate the strain and finally applicable to estimate a
stress distribution of a structural member. To verify the validity of the
method, the loading test on a simple beam was conducted and TLS
measured it. Through a comparison of the estimated stress and
reference stress, the validity of the method is confirmed.
108
10003298
Seasonal Based Pollution Performance of 11kV and 33kV Silicon Composite Insulators
Abstract: This paper presents the experimental results of 11 kV
and 33 kV silicon composite insulators under artificial salt and urea
polluted conditions. The tests were carried out under different
seasons like summer, winter, and monsoon. The artificial pollution is
prepared by properly dissolving the salt and urea in the water. The
prepared salt and urea pollutions are sprayed on the insulators and
dried up for sufficiently large time. The process is continued until a
uniform layer is formed on the surface of insulator. For each insulator
rating, four samples were tested. The maximum leakage current and
breakdown voltage were measured. From experimental data,
performance of test specimen is evaluated by comparing breakdown
voltage and leakage current during different seasons when exposed to
salt and urea polluted conditions. From these results the performance
of the insulators can be predicted when they are installed in
industrial, agricultural, and coastal areas. The experimental tests were
carried out in the High Voltage laboratory using two stage cascade
transformer having the rating of 1000 kVA, 500 kV.
107
10001400
A Novel Design in the Use of Planar Transformers for LDMOS Based Amplifiers in Bands II, III, DRM+, DVB-T and DAB+
Abstract: The coaxial transformer-coupled push-pull circuitry
has been used widely in HF and VHF amplifiers for many decades
without significant changes in the topology of the transformers. Basic
changes over the years concerned the construction and turns ratio of
the transformers as has been imposed upon the newer technologies
active devices demands. The balun transmission line transformers
applied in push-pull amplifiers enable input/output impedance
transformation, but are mainly used to convert the balanced output
into unbalanced and the input unbalanced into balanced. A simple
and affordable alternative solution over the traditional coaxial
transformer is the coreless planar balun. A key advantage over the
traditional approach lies in the high specifications repeatability;
simplifying the amplifier construction requirements as the planar
balun constitutes an integrated part of the PCB copper layout. This
paper presents the performance analysis of a planar LDMOS
MRFE6VP5600 Push-Pull amplifier that enables robust operation in
Band III, DVB-T, DVB-T2 standards but functions equally well in
Band II, for DRM+ new generation transmitters.
106
10001889
Using Artificial Neural Network Algorithm for Voltage Stability Improvement
Abstract: This paper presents an application of Artificial Neural
Network (ANN) algorithm for improving power system voltage
stability. The training data is obtained by solving several normal and
abnormal conditions using the Linear Programming technique. The
selected objective function gives minimum deviation of the reactive
power control variables, which leads to the maximization of
minimum Eigen value of load flow Jacobian. The considered reactive
power control variables are switchable VAR compensators, OLTC
transformers and excitation of generators. The method has been
implemented on a modified IEEE 30-bus test system. The results
obtain from the test clearly show that the trained neural network is
capable of improving the voltage stability in power system with a
high level of precision and speed.
105
10002913
Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis
Abstract: Sweep frequency response analysis has been turning
out a powerful tool for investigation of mechanical as well as
electrical integration of transformers. In this paper various aspect of
practical application of SFRA has been studied. Open circuit and
short circuit measurement were done on different phases of high
voltage and low voltage winding. A case study was presented for the
transformer of rating 31.5 MVA for various frequency ranges. A
clear picture was presented for sub- frequency ranges for HV as well
as LV winding. The main motive of work is to investigate high
voltage short circuit response. The theoretical concept about SFRA
responses is validated with expert system software results.
104
10002660
A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems
Abstract: The photovoltaic (PV) panel with no galvanic
isolation system is well known technique in the world which is
effective and delivers power with enhanced efficiency. The PV
generation presented here is for stand-alone system installed in
remote areas when as the resulting power gets connected to electronic
load installation instead of being tied to the grid. Though very small,
even then transformer-less topology is shown to be with leakage in
pico-ampere range. By using PWM technique PWM, leakage current
in different situations is shown. The results shown in this paper show
how the pico-ampere current is reduced to femto-ampere through use
of inductors and capacitors of suitable values of inductor and
capacitors with the load.
103
9999994
High-Voltage Resonant Converter with Extreme Load Variation: Design Criteria and Applications
Abstract: The power converter that feeds high-frequency, highvoltage
transformers must be carefully designed due to parasitic
components, mainly the secondary winding capacitance and the
leakage inductance, that introduces resonances in relatively lowfrequency
range, next to the switching frequency. This paper
considers applications in which the load (resistive) has an
unpredictable behavior, changing from open to short-circuit condition
faster than the output voltage control loop could react. In this context,
to avoid overvoltage and over current situations, that could damage
the converter, the transformer or the load, it is necessary to find an
operation point that assure the desired output voltage in spite of the
load condition. This can done adjusting the frequency response of the
transformer adding an external inductance, together with selecting the
switching frequency to get stable output voltage independently of the
load.
102
9999225
Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems
Abstract: Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.
101
9999226
Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool
Abstract: Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices.
This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.
100
9999423
A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model
Abstract: This paper deals with a novel approach of power
transformers diagnostics. This approach identifies the exact location
and the range of a fault in the transformer and helps to reduce
operation costs related to handling of the faulty transformer, its
disassembly and repair. The advantage of the approach is a
possibility to simulate healthy transformer and also all faults, which
can occur in transformer during its operation without its
disassembling, which is very expensive in practice. The approach is
based on creating frequency dependent impedance of the transformer
by sweep frequency response analysis measurements and by 3D FE
parametrical modeling of the fault in the transformer. The parameters
of the 3D FE model are the position and the range of the axial short
circuit. Then, by comparing the frequency dependent impedances of
the parametrical models with the measured ones, the location and the
range of the fault is identified. The approach was tested on a real
transformer and showed high coincidence between the real fault and
the simulated one.
99
9999618
Design of Walking Beam Pendle Axle Suspension System
Abstract: This paper deals with design of walking beam pendel
axle suspension system. This axles and suspension systems are
mainly required for transportation of heavy duty and Over Dimension
Consignment (ODC) cargo, which is exceeding legal limit in terms of
length, width and height. Presently, in Indian transportation industry,
ODC movement growth rate has increased in transportation of bridge
sections (pre-cast beams), transformers, heavy machineries, boilers,
gas turbines, windmill blades etc. However, current Indian standard
road transport vehicles are facing lot of service and maintenance
issues due to non availability of suitable axle and suspension to carry
the ODC cargoes. This in turn will lead to increased number of road
accidents, bridge collapse and delayed deliveries, which finally result
in higher operating cost. Understanding these requirements, this work
was carried out. These axles and suspensions are designed for
optimum self – weight with maximum payload carrying capacity with
better road stability.